Week 1: Welcome to statistics and data 2. Data basics

Stat 140 - 04

Mount Holyoke College

Dr. Shan Shan

Slides posted at http://sshanshans.github.io/stat140

2. Main ideas

- 1. Identify the 5W's
- 2. Understanding the data table

2. Main ideas

- 1. Identify the 5W's
- 2. Understanding the data table

2. Main ideas

1. Identify the 5W's

2. Understanding the data table

- Population of interest: collection of objects, items, humans/animals about which information is sought. (Whole)
- 2. **Observational units** are what you take measurements on in the dataset (Individual)
- 3. **Variables** are the characteristics recorded about each individual
- 4. **Categorical variables** identify a category for each case. They have a limited number of different values, called **levels**. E.g., Maritial status is a categorical variable, and the levels are single, married, divorced, widower, etc.
- 5. Quantitative/Numerical variables record measurements or amounts of something. E.g., Height, hours of sleep last night, etc.

Poll question

What are the observational units?

- 1. All patients in France
- 2. The French hospital
- 3. Patients who entered the emergency room in the previous week

Poll question

Indicate whether the following is a categorical variable, a numerical variable, or not a variable with regard to these observational units:

Whether or not the patient has health insurance

- 1. Categorical
- 2. Numerical
- 3. Not a variable

Poll question

Indicate whether the following is a categorical variable, a numerical variable, or not a variable with regard to these observational units:

Day of the week on which the patient arrives

- 1. Categorical
- 2. Numerical
- 3. Not a variable

Poll question

Indicate whether the following is a categorical variable, a numerical variable, or not a variable with regard to these observational units:

Total cost of the patient's visit

- 1. Categorical
- 2. Numerical
- 3. Not a variable

Poll question

Indicate whether the following is a categorical variable, a numerical variable, or not a variable with regard to these observational units:

How long the patient waits to be seen by a medical professional

- 1. Categorical
- 2. Numerical
- 3. Not a variable

Poll question

Indicate whether the following is a categorical variable, a numerical variable, or not a variable with regard to these observational units:

Average wait time of all patients in the data set

- 1. Categorical
- 2. Numerical
- 3. Not a variable

Poll question

Indicate whether the following is a categorical variable, a numerical variable, or not a variable with regard to these observational units:

Whether or not wait times tend to be longer on weekends than weekdays

- 1. Categorical
- 2. Numerical
- 3. Not a variable

- What is the research question?
- What is the population of interest?
- What are the observational units?
- ► Name all the variables.
- Specify for each variable whether its use indicates that it should be treated as categorical or quantitative.

Tutorial exercise: 10 minutes

Finish Topic 1: online shopping Goal: practice identifying observational units, categorical variables and numerical variables I'm looking for volunteer to share their answer with the class.

2. Main ideas

- 1. Identify the 5W's
- 2. Understanding the data table

Data is usually represented by a data matrix

- row: observational units
- column: variables

year <int></int>	month <int></int>	day <int></int>	dep_time <int></int>	dep_delay <dbl></dbl>	arr_time <int> ►</int>
2013	6	30	940	15	1216
2013	5	7	1657	-3	2104
2013	12	8	859	-1	1238
2013	5	14	1841	-4	2122
2013	7	21	1102	-3	1230
2013	1	1	1817	-3	2008

Tutorial exercise: 5 minutes

Finish section 2 Goal: understanding from a data matrix/frame I'm looking for volunteer to share their answer with the class.

Wickham, H. (2014). Tidy Data. Journal of Statistical Software 59 (10). DOI: 10.18637/jss.v059.i10

When working with tidy data, we can use the same tools in similar ways for different datasets...

...but working with untidy data often means reinventing the wheel with one-time approaches that are hard to iterate or reuse.

Tidyverse for tidydata

Tidyverse

19

make friends with tidy data.

Some helpful R commands to have a first look of your data matrix

- head
- str
- dim
- nrow (or ncol)
- names
- ▶ \$

Tutorial exercise: For the rest of class

Finish the rest of the tutorials Goal: practice using R command for data matrix/frame Let me know if you have any questions You are allowed to leave once you are done.

2. Main ideas

- 1. Identify the 5W's
- 2. Understanding the data table

- 1. Identify the 5W's
- 2. Understanding the data table