Week 3: Basic regression
 2. Introduction to linear model

Stat 140-04
Mount Holyoke College

1. Main ideas
2. Line of best fit
3. Finding the least square line in R
4. Prediction
5. Conditions for linear regression
6. Main ideas
7. Line of best fit
8. Finding the least square line in R
9. Prediction
10. Conditions for linear regression
11. Summary

Scientists believe that water with high concentrations of calcium and magnesium is beneficial for health.

We have recordings of the mortality rate (deaths per 100,000 population) and concentration of calcium in drinking water (parts per million) in 61 large towns in England and Wales.

- Response variable: variable whose behavior or variation you are trying to understand, on the y-axis (dependent variable)
- Explanatory variables: other variables that you want to use to explain the variation in the response, on the x-axis (independent variables); these are also referred to as predictors or features.

What is the best line of fit?
What qualities are important here?

Residual $=$ Observed - Predicted

1. Predicted value \hat{y} : estimate made from a model
2. Observed value y : value in the dataset

The line of best fit is the line for which the sum of the squared residuals is smallest, the least squares line.

1. Main ideas
2. Line of best fit
3. Finding the least square line in R
4. Prediction
5. Conditions for linear regression
6. Summary

The algebraic equation for a line is

$$
Y=b_{0}+b_{1} X
$$

The use of coordinate axes to show functional relationships was invented by Rene Descartes (1596-1650). He was an artillery officer, and probably got the idea from pictures that showed the trajectories of cannonballs.

General form of 'Im' command:

Im(y_variable \sim x_variable, data $=$ data_frame)

Use this to estimate the intercept and the slope of line in the Mortality/Health data.

$$
\begin{aligned}
& \text { linear_fit } \leftarrow \operatorname{Im} \text { (Mortality } \sim \text { Calcium, data }=\text { mortality_water) } \\
& \text { linear_fit }
\end{aligned}
$$

Coefficients:
(Intercept)
Calcium
1676.356
-3. 226

From the coefficients, we can write the regression line in the Mortality/Health data as

$$
\widehat{\text { Mortality }}=1676-3 \text { Calcium }
$$

Abstractly,

$$
\hat{y}=1676-3 x
$$

1. Main ideas
2. Line of best fit
3. Finding the least square line in R
4. Prediction
5. Conditions for linear regression
6. Summary

One of the towns in our sample had a measured Calcium concentration of 71 . What is the predicted value for the mortality rate in that town?
$\widehat{\text { Mortality }}=1676-3$ Calcium

One of the towns in our sample had a measured Calcium concentration of 71 . What is the predicted value for the mortality rate in that town?

$$
\widehat{\text { Mortality }}=1676-3 \text { Calcium }
$$

By hand:

$$
\widehat{\text { Mortality }}=1676-3 \times 71=1463
$$

The predicted value for the mortality rate in that town is 1463 deaths per 100,000 population.

By R:
The general form of 'predict' command:

predict(linear_model, newdata $=$ data_frame)

Code:

```
linear_fit <- lm(Mortality ~ Calcium, data = mortality_water)
predict_data <- data.frame( Calcium = 71)
predict(linear_fit, newdata = predict_data)
```

Output:
1
1447.303

By R:
The general form of 'predict' command:

predict(linear_model, newdata $=$ data_frame)

Code:

```
linear_fit <- lm(Mortality ~ Calcium, data = mortality_water)
predict_data <- data.frame( Calcium = 71)
predict(linear_fit, newdata = predict_data)
```


Output:

1
1447.303

The outputs by hand and by R are different because of rounding errors.

1. Main ideas
2. Line of best fit
3. Finding the least square line in R
4. Prediction
5. Conditions for linear regression
6. Summary

$$
\begin{array}{lllll}
\mathrm{x} 1, \mathrm{y} 1 & \mathrm{x} 2, \mathrm{y} 2 & \mathrm{x} 3, \mathrm{y} 3 & \mathrm{x} 4, \mathrm{y} 4 & \mathrm{x} 5, \mathrm{y} 5 \\
\mathrm{~b} 0=3 & \mathrm{~b} 0=3 & \mathrm{~b} 0=3 & \mathrm{~b} 0=3 & \mathrm{~b} 0=3 \\
\mathrm{~b} 1=0.5 & \mathrm{~b} 1=0.5 & \mathrm{~b} 1=0.5 & \mathrm{~b} 1=0.5 & \mathrm{~b} 1=0.5 \\
\mathrm{R} 2=67 \% & \mathrm{R} 2=67 \% & \mathrm{R} 2=67 \% & \mathrm{R} 2=67 \% & \mathrm{R} 2=67 \%
\end{array}
$$

All 5 have essentially the same estimated intercept, slope, R^{2} !
That means the five data sets should be pretty much the same right?

The scatterplots tell a different story.

Words of caution: always plot your data!

Is a linear model useful here?

Be sure to check the conditions for linear regression before reporting or interpreting a linear model.

- From the scatterplot of y against x, check the
- Straight Enough Condition Is the relationship between y and x straight enough to proceed with a linear regression model?
- Outlier Condition Are there any outliers that might dramatically influence the fit of the least squares line?
- Does the Plot Thicken? Condition Does the spread of the data around the generally straight relationship seem to be consistent for all values of x ?

Outline

1. Main ideas

1. Line of best fit
2. Finding the least square line in R
3. Prediction
4. Conditions for linear regression
5. Summary
6. Line of best fit
7. Finding the least square line in R
8. Prediction
9. Conditions for linear regression
