Week 3: Basic regression
 3. Linear model interpretation

Stat 140-04
Mount Holyoke College

Outline

1. Yesterday: line of best fit

2. Main ideas

1. Find the least square line by hand
2. Interpret intercept and slope

3. Summary

The line of best fit is the line for which the sum of the squared residuals is smallest, the least squares line.

The algebraic equation for a line is

$$
Y=b_{0}+b_{1} X
$$

The use of coordinate axes to show functional relationships was invented by Rene Descartes (1596-1650). He was an artillery officer, and probably got the idea from pictures that showed the trajectories of cannonballs.

1. Yesterday: line of best fit
2. Main ideas
3. Find the least square line by hand
4. Interpret intercept and slope
5. Summary
6. Yesterday: line of best fit
7. Main ideas
8. Find the least square line by hand 2. Interpret intercept and slope

3. Summary

- x : the explanatory variable (calcium concentration)
- y : the response variable (mortality rate)
- \bar{x}, \bar{y} : sample mean of x and y
- s_{x}, s_{y} : sample standard deviation of x and y
- R : correlation between x and y

Finding the least square line by hand

The least square line has

- slope:

$$
b_{1}=\frac{s_{y}}{s_{x}} R
$$

- intercept (the value at $x=0$):

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Mortality/Potion Example

Suppose we have the following information.
mortality rate calcium concentration

	(y)	(x)
mean	$\bar{y}=1524$	$\bar{x}=47$
sd	$s_{y}=188$	$s_{x}=38$
correlation		$R=-0.65$

Mortality/Potion Example

Suppose we have the following information. mortality rate calcium concentration

	(y)	(x)
mean	$\bar{y}=1524$	$\bar{x}=47$
sd	$s_{y}=188$	$s_{x}=38$
correlation		$R=-0.65$

1. Calculate the slope.

$$
b_{1}=R \times \frac{s_{y}}{s_{x}}=-0.65 \times \frac{188}{38}=-3.21
$$

Mortality/Potion Example

Suppose we have the following information. mortality rate calcium concentration

	(y)	(x)
mean	$\bar{y}=1524$	$\bar{x}=47$
sd	$s_{y}=188$	$s_{x}=38$
correlation		$R=-0.65$

1. Calculate the slope.

$$
b_{1}=R \times \frac{s_{y}}{s_{x}}=-0.65 \times \frac{188}{38}=-3.21
$$

2. Calculate the intercept.

$$
b_{0}=\bar{y}-b_{1} \times \bar{x}=1524+3.21 \times 47=1674.87
$$

Mortality/Potion Example

Suppose we have the following information. mortality rate calcium concentration

	(y)	(x)
mean	$\bar{y}=1524$	$\bar{x}=47$
sd	$s_{y}=188$	$s_{x}=38$
correlation		$R=-0.65$

1. Calculate the slope.

$$
b_{1}=R \times \frac{s_{y}}{s_{x}}=-0.65 \times \frac{188}{38}=-3.21
$$

2. Calculate the intercept.

$$
b_{0}=\bar{y}-b_{1} \times \bar{x}=1524+3.21 \times 47=1674.87
$$

3. Write out the linear model.
$\widehat{\text { Mortality }}=1675-3$ Calcium
4. Yesterday: line of best fit
5. Main ideas
6. Find the least square line by hand
7. Interpret intercept and slope
8. Summary

In general, the regression line is

$$
\hat{y}=b_{0}-b_{1} x
$$

1. Slope b_{1} : Slopes are always expressed in y-units per x-unit. They tell how the y-variable changes (in its units) for a one-unit change in the x-variable.
2. Intercept b_{0} : the value the line takes when x is zero

How to interpret intercept and slope in the context of data?

Units:

- x-variable: calcium concentration (parts per million)
- y-variable: mortality rate (deaths per 100,000 population)

The slope, -3 , says that for 1 unit increase in x-variable, we can expect, on average, to have 3 units less in y-variable.

What is the interpretation of slope?

Units:

- x-variable: calcium concentration (parts per million)
- y-variable: mortality rate (deaths per 100,000 population)

The slope, -3 , says that for 1 unit increase in x-variable, we can expect, on average, to have 3 units less in y-variable.

This means, for 1 part per million increase in calcium concentration, we can expect, on average, to have 3 deaths per 100,000 population less in mortality rate.

What is the interpretation of slope?

Units:

- x-variable: calcium concentration (parts per million)
- y-variable: mortality rate (deaths per 100,000 population)

The slope, -3 , says that for 1 unit increase in x-variable, we can expect, on average, to have 3 units less in y-variable.

This means, for 1 part per million increase in calcium concentration, we can expect, on average, to have 3 deaths per 100,000 population less in mortality rate.

Less formally, for each additional parts per million increase in calcium concentration, the predicted number of mortality rate decreases by 3 deaths per 100,000 population.

Algebraically, that's the value the line takes when x is zero.
Here, our model predicts that when the water does not have any calcium, on average, the mortality rate is 1676 deaths per 100,000 population.

Note that the intercept serves only as a starting value for our predictions, and we don't interpret it as a meaningful predicted value.

Outline

1. Yesterday: line of best fit

2. Main ideas

1. Find the least square line by hand
2. Interpret intercept and slope
3. Summary
4. Find the least square line by hand
5. Interpret intercept and slope
