# Week 3: Basic regression <br> 4. How useful is a linear model 

Stat 140-04<br>Mount Holyoke College

## 2020 U.S. Election Example



## 2020 U.S. Election Example



## What does the intercept mean here? Is it useful?

# What does the intercept mean here? Is it useful? 

What is $R^{2}$ ?

## Statistics Exam Example

The two scatterplots below show the relationship between final and mid-semester exam grades recorded during several years for a Statistics course at a university.

- Final exam the final
- Exam 1 first midterm
- Exam 2 second midterm




## Poll question

Which of these models would you prefer to use for predicting sales?
a Exam 1
(b) Exam 2



Being as specific and concrete as possible, write down a rule for selecting your preferred model

1. based only on visual characteristics of the plot.
2. based only on a quantitative summary of the data. You can describe how you would calculate your numeric summary of the data in a general sense; if you'd like you can write down a formula.

## Variation of residuals

Residuals:

- $e_{i}=y_{i}-\hat{y}_{i}$ (vertical distance between point and line)
- Smaller residuals mean the predictions were better.
- The key is to measure the spread of residuals.


Measure spread of residuals with the standard deviation. We call this the residual standard error, $s_{\text {RES }}$.

- Exam 1: 4.28
- Exam 2: 3.26


## Variation accounted by the model

The variability in the residuals describes how much variation remains after using the model


Let's compute the reduction in variation.

$$
\frac{s_{\text {sales }}^{2}-s_{\text {RES }}^{2}}{s_{\text {sales }}^{2}}=0.61
$$

This number describes the amount of variation in the $y$-variable that is explained by the least squares line.

An value of $61 \%$ indicates that $61 \%$ of the variation in final exam grades can be accounted for by Exam 1 grades.

Variation accounted by the model

- Exam 1: 0.61
- Exam 2: 0.73
meaning,
- $61 \%$ of the variation in final exam grades can be accounted for by Exam 1 grades;
- $73 \%$ of the variation in final exam grades can be accounted for by Exam 2 grades

Statisticians found the variation accounted by the model can be computed by $R^{2}$, the square of correlation.

Square of the correlation coefficient $R$ : between 0 and 1 , closer to 1 is better.
$R^{2}$ describes the amount of variation in the $y$-variable that is explained by the least squares line.

## Compute $R^{2}$ from R

## linear_fit $\leftarrow \operatorname{Im}$ (Mortality $\sim$ Calcium, data $=$ mortality_water) summary(linear_fit)

```
##
## Call:
## lm(formula = Mortality ~ Calcium, data = mortality_water)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\(\# \#\) & -348.61 & -114.52 & -7.09 & 111.52 & 336.45
\end{tabular}
## b0 intercept
## Coefficients: / Useful later
##
```



```
## --- b1 slope
## Signif. codes: 0'****' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
## Rsquared
## Residual standard error: 143 on 59 degrees of freedom
## Multiple R-squared: 0.4288, Adjusted R-squared: 0.4191
## F-statistic: 44.3 on 1 and 59 DF, p-value: 1.033e-08
```

