Week 5 Confidence Interval
 4. Comparing two proportions/means

Stat 140-04
Mount Holyoke College

Parameter	Distribution	Standard Error
Proportion	Normal	$\sqrt{\frac{p(1-p)}{n}}$
Difference in Proportions	Normal	$\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$
Mean	$t, \mathrm{df}=n-1$	$\sqrt{\frac{\sigma^{2}}{n}}$
Difference in Means	$t, \mathrm{df}=\min \left(n_{1}, n_{2}\right)-1$	$\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
Correlation	$t, \mathrm{df}=n-2$	$\sqrt{\frac{1-\rho^{2}}{n-2}}$

Confidence interval

In general, a confidence interval is of the form:

Point Estimate \pm Critical value \times SE

Outline

1. Examples
2. Sleep versus Caffeine
3. A horror example
4. Examples
5. Sleep versus Caffeine
6. A horror example

- Students were given words to memorize, then randomly assigned to take either a 90 min nap, or a caffeine pill. 2 $1 / 2$ hours later, they were tested on their recall ability.
- Variables
- Explanatory variable: sleep or caffeine
- Response variable: number of words recalled
- Is sleep or caffeine better for memory?

Mednick, Cai, Kanady, and Drummond (2008). "Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory," Behavioral Brain Research, 193, 79-86.

Poll question

What is the parameter of interest in the sleep versus caffeine experiment?
(a) Proportion
(b) Difference in proportions
c Mean
d Difference in means
© Correlation

- Let μ_{1} and μ_{2} be the mean number of words recalled after sleeping and after caffeine.
- Is there a difference in average word recall between sleep and caffeine?

$$
\text { Is } \mu_{1}=\mu_{2} \text { ? Or is } \mu_{1}-\mu_{2}=0
$$

Compute a 95% confidence interval for $\mu_{1}-\mu_{2}$.

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\min \left(n_{1}, n_{2}\right)-1}^{*}\left(\sqrt{\frac{s_{1}^{2}}{n_{1}}}+\sqrt{\frac{s_{2}^{2}}{n_{2}}}\right)
$$

The summaries are given as follows

$$
\begin{aligned}
& \bar{x}_{1}=45, \bar{x}_{2}=39 \\
& s_{1}=4.36, s_{2}=2.57 \\
& n_{1}=20, n_{2}=30 \\
& t_{\min (20,30)-1}^{*}=t_{19}^{*}=2.09
\end{aligned}
$$

The confidence interval is therefore computed as

$$
(45-39) \pm 2.09\left(\sqrt{\frac{4.36^{2}}{20}}+\sqrt{\frac{2.57^{2}}{30}}\right)=(3,9)
$$

We are 95% confident that the mean number of words recalled after sleeping is between 3 to 9 higher than the mean number of words recalled after caffeine.

Conditions to be checked

- Randomization condition: do data come from a random sample or suitably randomized experiment?
- Nearly normal condition: do data come from a distribution that is unimodal and symmetric.
- New: Independent Groups condition: are the two groups independent?

What independence mean?

Subjects in one group do not provide information about subjects in other groups

Misconception

A common error is to treat disjoint events as if they were independent. Don't make that mistake.

Poll question

A survey asked whether people agree or disagree with the statement "There is only one true love for each person." The survey collected data from 1312 husbands together with their wives.
The researchers are interested in the difference between males and females in the proportion who agree that each person has only one true love.
Are the male and female groups in this sample independent of each other?
a Yes
(b) No

Outline

1. Examples
2. Sleep versus Caffeine
3. A horror example

A horror example

The slasher horror film has been deplored based on claims that it depicts eroticized violence against predominately female characters as punishment for sexual activities.

Is survival for female characters in slasher films associated with sexual activity?

A horror example

Gender	Sexual activity	Outcome of physical aggression		n
		Survival	Death	
Female				
	Present	$13.3 \%(n=11)$	$86.7 \%(n=72)$	83
	Absent	$28.1 \%(n=39)$	$71.9 \%(n=100)$	139
Male		$9.5 \%(n=7)$	$90.5 \%(n=67)$	74
	Present	$14.8 \%(n=28)$	$85.2 \%(n=161)$	189

Let

- p_{1} denote the survival rate when there is sexual activity present in the movie
- p_{2} denote the survival rate when there is no sexual activity present in the movie

$$
\text { Is } p_{1}=p_{2} \text { ? }
$$

Compute a 95% confidence interval for $p_{1}-p_{2}$.

A horror example

$$
\hat{p}_{1}-\hat{p}_{2} \pm z^{*} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

We found,

$$
\begin{aligned}
& \hat{p_{1}}=0.133, \hat{p_{2}}=0.281 \\
& n_{1}=83, n_{2}=139 \\
& z^{*}=2
\end{aligned}
$$

The confidence interval is therefore
$(0.133-0.281) \pm 2\left(\sqrt{\frac{0.133(1-0.133)}{83}+\frac{0.281(1-0.281)}{139}}\right)$
This is simplified to be

$$
(-0.255,-0.041)
$$

We are 95% confident that the survival rate for female characters when there is sexual activity present in the movie is between 25.5% to 4.1% lower than when there is no sexual activity present.

Conditions to be checked

- Randomization condition: do data come from a random sample or suitably randomized experiment?
- Independent Groups condition: are the two groups independent?
- New: Success/Failure Condition: Both groups are big enough that at least 10 successes and at least 10 failures have been observed in each.

