Week 6: Hypothesis Testing3. Compute *p*-value with R

Stat 140 - 04

Mount Holyoke College

Dr. Shan Shan

Slides posted at http://sshanshans.github.io/stat140

- The randomization distribution shows what types of statistics would be observed, just by random chance, if the null hypothesis were true
- ► A *p*-value is the chance of getting a statistic as extreme as that observed, if *H*₀ is true
- ► A *p*-value can be calculated via
 - percentile method
 - CLT method
 - by R
- The smaller the *p*-value, the stronger the evidence against H₀

The significance level, α , is the threshold below which the *p*-value is deemed small enough to reject the null hypothesis

Often $\alpha=0.05$ by default, unless otherwise specified

In short

If p-value $< \alpha \rightarrow$ statistically significant \rightarrow reject H_0 . If p-value $\ge \alpha$, fail to reject H_0 .

Poll question

Which of the following p-values gives the strongest evidence against H_0 ?

- **a** 0.005
- **b** 0.1
- **o** 0.32
- **d** 0.56
- **o** 0.94

Poll question

Two different studies obtain two different *p*-values. Study A obtained a *p*-value of 0.002 and Study B obtained a *p*-value of 0.2. Which study obtained stronger evidence against the null hypothesis?

- Study A
- Study B

Fix a significance level $\boldsymbol{\alpha}$

- \blacktriangleright If the p-value is less than α
 - Reject H_0
 - the sample would be extreme if H_0 were true
 - the results are statistically significant
 - we have evidence for H_A
- \blacktriangleright If the p-value is greater than α
 - Do not reject H_0
 - the sample would not be too extreme if H_0 were true
 - the results are not statistically significant
 - the test is inconclusive; either H_0 or H_A may be true