# Week 7 Inference for regression 3. Stat140 Essentials and Beyond 

Stat 140-04<br>Mount Holyoke College

The way the data are/were collected determines the scope of inference

- For generalizing to the population: was it a random sample? Was there sampling bias?
- For assessing causality: was it a randomized experiment?

Collecting good data is crucial to making good inferences based on the data

## Review: Exploratory data analysis

Before doing inference, always explore your data with descriptive statistics

- Always visualize your data! Visualize your variables and relationships between variables
- Calculate summary statistics for variables and relationships between variables - these will be key for later inference
- The type of visualization and summary statistics depends on whether the variable(s) are categorical or quantitative

For good estimation, provide not just a point estimate, but an interval estimate which takes into account the uncertainty of the statistic

Confidence intervals are designed to capture the true parameter for a specified proportion of all samples

A P\% confidence interval can be created by

- bootstrapping (sampling with replacement)
- statistic $\pm z^{*} \times S E$

A p-value is the probability of getting a statistic as extreme as observed, if $H_{0}$ is true

The p-value measures the strength of the evidence the data provide against H0

- If the p-value is low, reject $H_{0}$
- If p-value is not low, then the test is inconclusive


## Review: Regression

So far, regression is a way to predict one response variable with one explanatory variables


Write the steps out mathematically,

- Given a finite data set: $\left(x_{i}, y_{i}\right)_{i=1}^{n}$
- We model with $y=b_{0}+b_{1} x$
- Find $b_{0}$ and $b_{1}$ so that $L\left(b_{0}, b_{1}\right):=\sum_{i=1}^{n}\left(y_{i}-b 0-b_{1} x\right)^{2}$ is minimized
- This is a problem of optimization!

Add a new variable $z$

- Given a finite data set: $\left(x_{i}, y_{i}, z_{i}\right)_{i=1}^{n}$
- We model with $z=b_{0}+b_{1} x+b_{2} y$
- Find $b_{0}, b_{1}, b_{2}$ so that $L\left(b_{0}, b_{1}, b_{2}\right):=\sum_{i=1}^{n}\left(z_{i}-b_{0}-b_{1} x_{i}-b_{2} y_{i}\right)^{2}$ is minimized
- This is again a problem of optimization!



Using the gradient, which is a generalization of the derivative to multiple dimensions, we can find a way to descend on the surface step by step. Take Multivariable Calculus (MATH 203)!


Since our loss function $L\left(b_{0}, b_{1}, b_{2}\right)$ is convex, we will eventually reach the line of best fit. Take Optimization (MATH 339)!

- The variable you want to predict $Y$ (say the price of Tesla stock tomorrow).
- The features used to predict $X_{1}, X_{2}, \ldots, X_{k}$ (say the weather, the stock prices of a 100 different related stocks on the previous day, etc.)
- The form of the regression function and the parameters defining them $F_{\theta}: X_{1} \times X_{2} \cdots \times X_{n} \rightarrow Y$ (this varies for every kind of regression strategy).
- Large quantities of training data.
- A loss function based on the data $L(\theta)$, which we are trying to minimize in order to find the best $F(\theta)$
- An optimization algorithm for minimizing $L(\theta)$.
- Validating the function on test data.


## Use (logistic) regression to recognize image

How to teach a robot to be able to recognize images as either a cat or a non-cat? This sounds like a biology problem. How can we formulate this as a regression problem?

- Everything is data!
- $\mathbb{R}^{3 \times 1000 \times 1000}$ is a space of 1000 by 1000 rgb images
- $C \subset \mathbb{R}^{3 \times 1000 \times 1000}$ is the cat subspace
- Try to learn the classifier function $f_{C}: \mathbb{R}^{3000000} \rightarrow\{1,-1\}$ so that $f_{C}(x)=1$ if $x \in C$.

Take Linear Algebra (MATH 211) and Machine learning (CS335)!

Say we want to classify $32 \times 32$ faces. That means 1024 features or dimensions. Hard problem! Curse of dimensionality.


## Amazing idea: learn representation

## "Dimension Reduction" or "Representation Learning"

original data space



## Representation learning + Regression

Now we can classify faces:

- Raw images to Eigenface basis coordinates
- $\mathbb{R}^{32 \times 32} \rightarrow X_{1} \times \ldots X_{k} \rightarrow Y$
- We learn the feature representation $F: \mathbb{R}^{32 \times 32} \rightarrow X_{1} \times \ldots X_{k}$ first
- Then, we learn classifier $X_{1} \times \ldots X_{k} \rightarrow Y$


## Several layers of representation

## Deep learning



We don't really understand why it works, it is very hard to analyze non-convex heuristic optimization.

The Connection Between Applied Mathematics and Deep Learning https://sinews.siam.org/Details-Page/ the-connection-between-applied-mathematics-and-deep-learning


## Where is my face?



Turns out Zoom has a crappy face-detection algorithm that erases black faces...and determines that a nice pale globe in the background must be a better face than what should be obvious.

https://www.wired.com/story/
best-algorithms-struggle-recognize-black-faces-equally/



Bias in the Al system

- A training dataset that isn't representative
- A training dataset that has societal bias baked in
- A poorly chosen objective function in an ML model

What can you do?

- Defining and following a set of Al principles: https://ai.google/responsibilities/ responsible-ai-practices/
- Investing in tools and technology approaches to support the operationalization of the principles, e.g, AI Fairness 360 https://aif360.mybluemix.net
- Diversify your team https://arxiv.org/pdf/2002.11836.pdf

Responsible AI


Mant

